一、 什么是噪声
最初人们把造成收音机这类音响设备所发出噪声的那些电子信号,称为噪声。但是,一些非目的的电子信号对电子线路造成的后果并非都和声音有关,因而,后来人们逐步扩大了噪声概念。噪声是一种电子信号,而干扰是指的某种效应,是由于噪声原因对电路造成的一种不良反应。而电路中存在着噪声,却不一定就有干扰。在数字电路中。往往可以用示波器观察到在正常的脉冲信号上混有一些小的尖峰脉冲是所不期望的,而是一种噪声。但由于电路特性关系,这些小尖峰脉冲还不致于使数字电路的逻辑受到影响而发生混乱,所以可以认为是没有干扰。
当一个噪声电压大到足以使电路受到干扰时,该噪声电压就称为干扰电压。而一个电路或一个器件,当它还能保持正常工作时所加的最大噪声电压,称为该电路或器件的抗干扰容限或抗扰度。
一般说来,噪声很难消除,但可以设法降低噪声的强度或提高电路的抗扰度,以使噪声不致于形成干扰。
二、噪声的来源
1.第一稳压稳压电源芯片本身的输出并不是恒定的,会有一定的波纹。 这是由稳压芯片自身决定的,一旦选好了稳压电源芯片,对这部分噪声我们只能接受,无法控制。稳压电源大体分为线性电源和开关电源两种。线性电源(LDO)通常具有很好的输出纹波特性,电源本身输出噪声低,供电稳定,但是输出功率不大,转换效率低。开关电源(DC-DC)可以输出很大的电流,转换效率高,但是通常输出纹波较大。
2. 稳压电源无法实时响应负载对于电流需求的快速变化。 稳压电源芯片通过感知其输出电压的变化,调整其输出电流,从而把输出电压调整回额定输出值。多数常用的稳压源调整电压的时间在毫秒到微秒量级。因此,对于负载电流变化频率在直流到几百KHz之间时,稳压源可以很好的做出调整,保持输出电压的稳定。当负载瞬态电流变化频率超出这一范围时,稳压源的电压输出会出现跌落,从而产生电源噪声。现在,微处理器的内核及外设的时钟频率已经超过了600兆赫兹,内部晶体管电平转换时间下降到800皮秒以下。这要求电源分配系统必须在直流到1GHz范围内都能快速响应负载电流的变化,但现有稳压电源芯片不可能满足这一苛刻要求。我们只能用其他方法补偿稳压源这一不足,比如电源去耦方法。
3.负载瞬态电流在电源路径阻抗和地路径阻抗上产生的压降。 PCB板上任何电气路径不可避免的会存在阻抗,不论是完整的电源平面还是电源引线。对于多层板,通常提供一个完整的电源平面和地平面,稳压电源输出首先接入电源平面,供电电流流经电源平面,到达负载电源引脚。地路径和电源路径类似,只不过电流路径变成了地平面。完整平面的阻抗很低,但确实存在。如果不使用平面而使用引线,那么路径上的阻抗会更高。另外,引脚及焊盘本身也会有寄生电感存在,瞬态电流流经此路径必然产生压降,因此负载芯片电源引脚处的电压会随着瞬态电流的变化而波动,这就是阻抗产生的电源噪声。在电源路径表现为负载芯片电源引脚处的电压轨道塌陷,在地路径表现为负载芯片地引脚处的电位和参考地电位不同。
三、 噪声测试
1、频谱仪自动测试(Phase Noise)
该方法还是基于频谱仪测试载波功率和噪声功率,但是可以自动进行测试,并显示出完整的测试曲线,频偏范围可以自由设定,操作简便快捷,精准度比频谱仪直接测试法要高,测试速度要快。
频谱仪法测试相位噪声均基于频谱测试的结果进行相位噪声的计算,该测试法无法区分调幅噪声和相位噪声,灵敏度受仪器固有的相位噪声限制,无载波抑制,测量范围受分辨率滤波器形状因子限制,动态范围有限等缺点;但是,该方法测试设置简单、快捷,频率偏移范围大,可测试很多信号源的特性,比如:杂散发射、邻信道功率泄漏、高次谐波;并且可以直接显示相位噪声曲线(当调幅噪声忽略不计时)。
2、鉴相器测试法
2.1、鉴相器测试原理
鉴相器法是采用被测信号源与一同频参考信号源进行鉴相,鉴相器输出信号经低通滤波器和低噪声放大器后输入到频谱仪或接收机中。
2.2、延迟线测试法
延迟线法是把被测信号分成两路,一路信号经过延迟线后与另一路经过一个移相器移相后的信号进行鉴相,然后再滤波放大分析。延迟线的作用是将频率的变化转化为相位的变化,当频率变化时,将在延迟线中引起相位正比例的变化。双平衡混频器将相位变化转化为电压变化。
该测试方法具有载波抑制、调幅噪声测试功能,测试时不需要额外的参考源,不需要信号同步,频率漂移不再是问题。但是该测试方法高频时损耗较大,使得测试灵敏度较低,而且测试时需要校准,操作较为复杂。
2.3、锁相环测试法
由于振荡器的相位跳动,90度的相位偏移并不能时刻稳定。因此需要引人锁相环路对相位进行锁定,以保证两路信号相位稳定的相差90度。
由于锁相环路的引入会对相位噪声测量带来影响,在环路带宽内,振荡器的相位噪声将会被改善,因此在测量过程中需要对环路带宽内的相位噪声进行修正。通过锁相环的环路带宽特性,可以计算出环路增益,从而可以对测量结果进行修正。
四、 噪声防止方法:
合理地接地、采用差分结构传输模拟信号、在电路的电源输出端加去耦电容、采用电磁屏蔽技术、模拟数字地分开、信号线两边走底线、地线隔离等等。
1、模拟电路噪声的消除更多地依赖于经验而非科学依据。设计人员经常遇到的情况是电路的模拟硬件部分设计出来以后,却发现电路中的噪声太大,而不得不重新进行设计和布线。
这种“试试看”的设计方法在几经周折之后最终也能获得成功。不过,避免噪声问题的更好方法是在设计初期进行决策时就遵循一些基本的设计准则,并运用与噪声相关的基本原理等知识。
检测标准及参数:
测试标准 | 标准名称 | 参数 | 测试内容 | 适用范围 |
GB/T 19889.5-2006 | 声学建筑和建筑构件隔声 测量第5部分:外墙构件和外墙空气声隔声的现场测量 | 外墙构件和 外墙空气声隔声 | 外墙构件和 外墙空气声隔声测量 | 室内建筑 |
GB 22337-2008 | 社会生活环境噪声排放标准 | 结构传播固 定室内噪声 | 结构传播固 定室内噪声测量 |